Highlights

Cognitive fatigue is explored with magnetic resonance spectroscopy during a workday
Hard cognitive work leads to glutamate accumulation in the lateral prefrontal cortex
The need for glutamate regulation reduces the control exerted over decision-making
Reduced control favors the choice of low-effort actions with short-term rewards

Summary

Behavioral activities that require control over automatic routines typically feel effortful and result in cognitive fatigue. Beyond subjective report, cognitive fatigue has been conceived as an inflated cost of cognitive control, objectified by more impulsive decisions. However, the origins of such control cost inflation with cognitive work are heavily debated. Here, we suggest a neuro-metabolic account: the cost would relate to the necessity of recycling potentially toxic substances accumulated during cognitive control exertion. We validated this account using magnetic resonance spectroscopy (MRS) to monitor brain metabolites throughout an approximate workday, during which two groups of participants performed either high-demand or low-demand cognitive control tasks, interleaved with economic decisions. Choice-related fatigue markers were only present in the high-demand group, with a reduction of pupil dilation during decision-making and a preference shift toward short-delay and little-effort options (a low-cost bias captured using computational modeling). At the end of the day, high-demand cognitive work resulted in higher glutamate concentration and glutamate/glutamine diffusion in a cognitive control brain region (lateral prefrontal cortex [lPFC]), relative to low-demand cognitive work and to a reference brain region (primary visual cortex [V1]). Taken together with previous fMRI data, these results support a neuro-metabolic model in which glutamate accumulation triggers a regulation mechanism that makes lPFC activation more costly, explaining why cognitive control is harder to mobilize after a strenuous workday.
.
Wiehler A, Branzoli F, Adanyeguh I, Mochel F, Pessiglione M. A neuro-metabolic account of why daylong cognitive work alters the control of economic decisions. Curr Biol. 2022 Aug 22;32(16):3564-3575.e5. doi: 10.1016/j.cub.2022.07.010. Epub 2022 Aug 11. PMID: 35961314.
.
.
 see also:
Dienel SJ, Schoonover KE, Lewis DA. Cognitive Dysfunction and Prefrontal Cortical Circuit Alterations in Schizophrenia: Developmental Trajectories. Biol Psychiatry. 2022 Sep 15;92(6):450-459. doi: 10.1016/j.biopsych.2022.03.002. Epub 2022 Mar 10. PMID: 35568522; PMCID:
https://pubmed.ncbi.nlm.nih.gov/35568522/
and
Huang LC, Lin SH, Tseng HH, Chen KC, Abdullah M, Yang YK. Altered glutamate level and its association with working memory among patients with treatment-resistant schizophrenia (TRS): a proton magnetic resonance spectroscopy study. Psychol Med. 2022 Feb 24:1-8. doi: 10.1017/S003329172100533X. Epub ahead of print. PMID: 35197141.
https://pubmed.ncbi.nlm.nih.gov/35197141/
This entry was posted in Uncategorized. Bookmark the permalink.

Comments are closed.