IL-17 controls central nervous system autoimmunity through the intestinal microbiome

Abstract: : “Interleukin-17A– (IL-17A) and IL-17F–producing CD4+ T helper cells (TH17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). TH17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, TH 17 cells, fueling a long-standing debate in the neuroimmunology field. Here, we demonstrated that mice deficient for IL-17A/F lose their susceptibility to EAE, which correlated with an altered composition of their gut microbiota. However, loss of IL-17A/F in TH cells did not diminish their encephalitogenic capacity. Reconstitution of a wild-type–like intestinal microbiota or reintroduction of IL-17A specifically into the gut epithelium of IL-17A/F–deficient mice reestablished their susceptibility to EAE. Thus, our data demonstrated that IL-17A and IL-17F are not encephalitogenic mediators but rather modulators of intestinal homeostasis that indirectly alter CNS-directed autoimmunity……”

Regen T et al., Science Immunology  05 Feb 2021: Vol. 6, Issue 56, eaaz6563
DOI: 10.1126/sciimmunol.aaz6563

https://immunology.sciencemag.org/content/6/56/eaaz6563/tab-pdf

This entry was posted in Uncategorized. Bookmark the permalink.

Comments are closed.